Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1538020

RESUMO

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Assuntos
Myrtus communis/farmacologia , Plantas Medicinais , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Folhas de Planta/metabolismo , Antibacterianos , Antifúngicos , Antioxidantes
2.
J Cell Mol Med ; 28(8): e18178, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553964

RESUMO

Bergamot essential oil (BEO) is an extract of the bergamot fruit with significant neuroprotective effect. This study was to investigate the effects and the underlying mechanism of BEO in mitigating depression. GC-MS were used to identify its constituents. Antidepressive properties of BEO were evaluated by sucrose preference test (SPT), force swimming test (FST) and open field test (OFT). Nissl staining was used to determine the number of Nissl bodies in hippocampus (HIPP) of rats. Changes in HIPP dendritic length and dendritic spine density were detected by Golgi-Cox staining. Immunohistochemistry and Western blot were used to detect the postsynaptic density protein-95 (PSD-95) and synaptophysin (SYP) in the HIPP of rats. The enzyme-linked immunosorbent assay was used to determine the 5-hydroxytryptamine (5-HT), insulin-like growth factor 1 (IGF-1) and interleukin-1ß (IL-1ß) in the HIPP, serum and cerebrospinal fluid (CSF) of rats. Inhaled BEO significantly improved depressive behaviour in chronic unpredictable mild stress (CUMS) rats. BEO increased Nissl bodies, dendritic length and spine density, PSD-95 and SYP protein in the HIPP. Additionally, BEO upregulated serum 5-HT, serum and CSF IGF-1, while downregulating serum IL-1ß. Collectively, inhaled BEO mitigates depression by protecting the plasticity of hippocampal neurons, hence, providing novel insights into treatment of depression.


Assuntos
Depressão , Óleos Voláteis , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Serotonina/metabolismo , Hipocampo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Neurônios/metabolismo , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal
3.
Int J Biol Macromol ; 264(Pt 2): 130763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467223

RESUMO

Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.


Assuntos
Lindera , Óleos Voláteis , Terpenos/metabolismo , Frutas , Lindera/genética , Lindera/metabolismo , Óleos Voláteis/metabolismo , Monoterpenos/metabolismo
4.
Science ; 383(6683): 659-666, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330135

RESUMO

Secretory structures in terrestrial plants serve as reservoirs for a variety of secondary metabolites. Among these, the secretory cavity of the Rutaceae family is notable for containing essential oils with a wide range of applications. However, the molecular basis underlying secretory cavity development is unknown. Here, we reveal a molecular framework for Citrus oil gland formation. Using genetic mapping and genome editing, we demonstrated that this process requires LATE MERISTEM IDENTITY1 (LMI1), a key regulator of leaf serration. A conserved GCC box element of the LMI1 promoter recruits DORNROSCHEN-like (DRNL) for transcriptional activation. This DRNL-LMI1 cascade triggers MYC5 activation, facilitating the development of oil glands and the biosynthesis of essential oils. Our findings spotlight cis-regulatory divergence within leaf shape genes, propelling novel functional tissue formation.


Assuntos
Citrus , Óleos Voláteis , Proteínas de Plantas , Fatores de Transcrição , Tricomas , Citrus/genética , Citrus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Óleos Voláteis/metabolismo , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Sci Rep ; 14(1): 3554, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347010

RESUMO

The study evaluated the effect of adding of nutmeg (Myristica fragrans Houtt.) essential oil (NEO) as a feed additive on methane production, rumen fermentation parameters, rumen enzyme activity, and nutrient digestibility in vitro. This study was divided into three treatments based on the level of NEO addition, which included 0 µL/L (T0), 100 µL/L (T1), and 200 µL/L (T2). The feed substrate composition consisted of king grass as forage and concentrate in a 60:40 ratio. Feed fermentation was conducted using the Menke and Steingass gas production and two-step Tilley and Terry in-vitro digestibility technique. The data obtained from the study were analyzed using one-way ANOVA and if there were differences between means, they were further assessed using DMRT. The results showed that T2 treatment significantly decreased (P < 0.05) ammonia (NH3) levels, total VFA, acetate, propionate, butyrate, and microbial protein (P < 0.05). Methane production and the activity of rumen protease enzyme significantly decreased (P < 0.05) at T1 and T2 treatment. The T2 treatment significantly reduced (P < 0.05) protein digestibility (IVCPD) at 48 h, while IVCPD at 96 h significantly increased (P < 0.05). On the other hand, the addition of nutmeg essential oil did not effect the activity of the amylase, carboxymethyl cellulase, and ß-glucosidase enzymes, as well as the in-vitro digestibility of dry matter (IVDMD), crude fiber (IVCFD), and organic matter (IVOMD). The conclusion drawn from this study is that the optimum level for NEO is 200 µL/L, which can reduce methane production and increase crude protein digestibility at 96 h without any negative effect on rumen fermentation and nutrient digestibility.


Assuntos
Myristica , Óleos Voláteis , Animais , Dieta , Myristica/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Digestão , Rúmen/metabolismo , Fermentação , Nutrientes , Metano/metabolismo , Ração Animal/análise
6.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279251

RESUMO

Glucose transporter-4 (GLUT4) represents the major glucose transporter isoform responsible for glucose uptake into insulin-sensitive cells, primarily in skeletal muscle and adipose tissues. In insulin-resistant conditions, such as type 2 diabetes mellitus, GLUT4 expression and/or translocation to the cell plasma membrane is reduced, compromising cell energy metabolism. Therefore, the use of synthetic or naturally occurring molecules able to stimulate GLUT4 expression represents a good tool for alternative treatments of insulin resistance. The present study aimed to investigate the effects of essential oils (EOs) derived from Pinus spp. (P. nigra and P. radiata) and of their main terpenoid constituents (α- and ß-pinene) on the expression/translocation of GLUT4 in myoblast C2C12 murine cells. For this purpose, the chemical profiles of the EOs were first analyzed through gas chromatography-mass spectrometry (GC-MS). Cell viability was assessed by MTT assay, and GLUT4 expression/translocation was evaluated through RT-qPCR and flow cytometry analyses. The results showed that only the P. nigra essential oil (PnEO) and α-pinene can increase the transcription of the Glut4/Scl2a4 gene, resulting in a subsequent increase in the amount of GLUT4 produced and its plasma membrane localization. Moreover, the PnEO or α-pinene can induce Glut4 expression both during myogenesis and in myotubes. In summary, the PnEO and α-pinene emulate insulin's effect on the GLUT4 transporter expression and its translocation to the muscle cell surface.


Assuntos
Monoterpenos Bicíclicos , Diabetes Mellitus Tipo 2 , Óleos Voláteis , Camundongos , Animais , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insulina Regular Humana/farmacologia , Glucose/metabolismo
7.
Poult Sci ; 103(3): 103440, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271757

RESUMO

This study aimed to evaluate the beneficial role of chamomile essential oil in improving productive and reproductive performances, egg quality, and blood metabolites and reducing the toxic effect of Ochratoxin A (OTA) in quail breeder's diets. A total of 144 mature quails, 8 wk old, were divided into 6 groups. The treatments were: G1 (the control), G2 (supplemented with OTA 1 mg/kg diet), G3 (supplemented with chamomile oil 0.5 g/kg diet), G4 (supplemented with chamomile oil 1 G/kg diet), G5 (supplemented with OTA 1 mg/kg diet + chamomile oil 0.5 g/kg diet), and G6 (supplemented with OTA 1 mg/kg diet + chamomile oil 1 g/kg diet). The OTA administration alone significantly decreased egg production and mass in quail breeders (P < 0.0001). Moreover, poor feed conversion ratio (FCR), fertility percentage (P < 0.0001), and hatchability percentage (P < 0.0009) were recorded. A significant decline (P < 0.05) in the levels of serum protein (total protein and globulin) was also recorded in OTA-contaminated groups, along with elevated serum levels of liver enzymes such as alanine transaminase (ALT) and Aspartate transaminase (AST) and kidney function test as urea and creatinine levels (P < 0.05). Ochratoxin A-contaminated feed resulted in a significant elevation (P < 0.05) in total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL), along with a significant reduction (P < 0.05) in antioxidant status and immunological response. The supplementation of chamomile essential oil, either 0.5 g/kg or 1g/kg, to the basal diet or OTA-supplemented feed, revealed a significant increase in hatchability %, fertility, egg mass, and egg production and better FCR, egg quality, and immunological status when compared to OTA only. Moreover, chamomile essential oil supplementation improves liver and kidney function markers, decreases LDL, VLDL), TG, and TC. Along with a significant increase (P < 0.05) in terms of antioxidant status as glutathione peroxidase enzyme (GPX), total antioxidant capacity (TAC), and superoxide dismutase (SOD) and significantly (P < 0.05) improves immunological response as IgM, IgG, lysozyme and complement 3. In summary, chamomile oil supplementation, either separate or combined with OTA, reduced the adverse effects of OTA and led to improved productive and reproductive performance, egg quality, and blood metabolites in Japanese quail breeders.


Assuntos
Antioxidantes , Ocratoxinas , Óleos Voláteis , Animais , Antioxidantes/metabolismo , Codorniz/metabolismo , Camomila/metabolismo , Coturnix/fisiologia , Galinhas/metabolismo , Óvulo/metabolismo , Óleos Voláteis/metabolismo , Lipoproteínas LDL
8.
Gene ; 896: 148041, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036074

RESUMO

The newly released interspecific hybrid variety CIM-Shishir, resulting from a cross between Ocimum basilicum and Ocimum kilimandscharicum claims to be a multicut, lodging resistant, cold tolerant, high essential oil yielding with linalool rich variety. It has a purple-green stem and has a unique feature and advantage of better survival in the winter season than other O. basilicum varieties, illustrating its physiological mechanisms for cold tolerance. In this study, we subjected both the CIM-Shishir variety and a control plant to cold stress to investigate the impact of low temperatures on various physiological, trichome developments, secondary metabolite constitution aspects related to essential oil production, and gene expression. The analysis revealed a significantly higher density and altered morphology of trichomes on the leaf surface of the variety subjected to low temperatures, indicating its adaptation to cold conditions. Furthermore, when comparing the treated plants under low-temperature stress, it was observed that the relative electrolyte leakage and Malondialdehyde (MDA) contents substantially increased in the control in contrast to the CIM-Shishir variety. This finding suggests that CIM-Shishir exhibits superior cold tolerance. Additionally, an increase in proline content was noted in the variety exposed to low temperatures compared to the control. Moreover, the chlorophyll and anthocyanin content gradually increased with prolonged exposure to low-temperature stress in the newly developed variety, indicating its ability to maintain photosynthetic capacity and adapt to cold conditions. The activities of superoxide dismutase (SOD) also increased under low-temperature conditions in the CIM-Shishir variety, further highlighting its cold tolerance behaviour. In our research, we investigated the comprehensive molecular mechanisms of cold response in Ocimum. We analyzed the expression of key genes associated with cold tolerance in two plant groups: the newly developed hybrid variety known as CIM-Shishir Ocimum, which exhibits cold tolerance, and the control plants susceptible to cold climates that include WRKY53, ICE1, HOS1, COR47, LOS15, DREB5, CBF4, LTI6, KIN, and ERD2. These genes exhibited significantly higher expression levels in the CIM-Shishir variety compared to the control, shedding light on the genetic basis of its cold tolerance. The need for climate-smart, resilient high-yielding genotype is of high importance due to varied climatic conditions as this will hit the yield drastically and further to the economic sectors including farmers and many industries that are dependent on the bioactive constituents of Ocimum.


Assuntos
Ocimum basilicum , Ocimum , Óleos Voláteis , Resiliência Psicológica , Ocimum basilicum/genética , Ocimum basilicum/metabolismo , Temperatura , Ocimum/genética , Ocimum/metabolismo , Óleos Voláteis/análise , Óleos Voláteis/metabolismo , Percepção , Temperatura Baixa
9.
Vet Res Commun ; 48(1): 139-152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37572186

RESUMO

This study explored the effects of the essential oil of Ocimum basilicum (EOOB) and ginger extract (GE) during the transportation of pearl gentian grouper from water quality, serum biochemistry, oxidative stress, meat flavor, and gill tissue morphology. Fish (450 ± 50 g) were allocated to the following 5 treatments: control group (fish transported in water only), 5 mg/LEOOB, 10 mg/LEOOB, 3 mg/LGE, and 6 mg/LGE and transported in insulation boxes (66 × 51 × 37.8 cm) for 72 h. Samples were taken at 0, 12, 36, 60, and 72 h immediately after transport. It was found that 10 mg/LEOOB and 6 mg/LGE could reduce the levels of total ammonia nitrogen (TAN), dissolved oxygen (DO), water pH, serum glucose (GLU), cortisol (COR), liver superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GPX), increase the activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as significantly increase the total free amino acid (TFAA) content in muscle compared to the control group (P < 0.05). In addition, by observing the microstructure of gill tissue, it was found that compared with untreated grouper, the morphological damage of gill tissue in EOOB and GE treatment was alleviated. These results indicated that adding appropriate amounts of EOOB and GE to transport water could improve the water quality, relieve stress, and lower energy metabolism of grouper during transport. The results of this research will help to improve the survival rate of grouper after transportation and decrease economic losses to fishery.


Assuntos
Bass , Ocimum basilicum , Óleos Voláteis , Extratos Vegetais , Animais , Brânquias/metabolismo , Estresse Oxidativo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Fígado/metabolismo
10.
Curr Drug Deliv ; 21(5): 744-752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36683374

RESUMO

BACKGROUND: The stratum corneum (SC) is the main barrier of the skin, and cosmeceuticals are different from ordinary cosmetics in that they need to deliver active ingredients targeting specific skin problems through the SC into the deeper layers of the skin. Thus, we designed a compound essential oil (CEO) extracted from Salvia miltiorrhiza Bge and Cinnamomum cassia Presl, supplemented with borneol to deliver active ingredients through the SC. METHODS: The CEO was prepared by flash extraction combined with the microwave method. Moreover, the main components of the CEO were determined using gas chromatography-mass spectrometry (GCMS). Visualization techniques, such as scanning electron microscopy (SEM), haematoxylin-eosin (HE) staining, and confocal laser scanning microscopy (CLSM), were used to study the permeationpromoting mechanism of the CEO on the skin. Furthermore, the permeation-promoting effects of the CEO on both hydrophobic and hydrophilic ingredients were tested via in vitro skin penetration experiments and in vivo microdialysis experiments. RESULTS: The results indicated the ability of the CEO to alter the structure of the SC, leading to enhanced transdermal permeation of hydrophobic and hydrophilic ingredients. The 1.5% CEO group demonstrated the best permeation-promoting effect compared to the other CEO groups and blank groups (P<0.05). Furthermore, the CEO displayed an expedited permeability-promoting effect on hydrophobic ingredients compared to hydrophilic ingredients. CONCLUSION: It is concluded that the prepared CEO can promote the transdermal permeation of hydrophobic and hydrophilic ingredients. This study will provide a reference for the application of the prepared CEO in the development of cosmeceuticals with natural efficacy.


Assuntos
Cosmecêuticos , Óleos Voláteis , Absorção Cutânea , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Administração Cutânea , Pele/metabolismo
11.
Int J Radiat Biol ; 100(2): 151-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37755121

RESUMO

PURPOSE: The genus Mentha spp. is an aromatic herb from the family 'Lamiaceae'. It is extensively predominant in temperate and sub-temperate regions of the world. The essential oil of this species is enriched with broad aroma constituents extensively utilized in food, beverages, flavor, cosmetics, perfumery, and pharmaceutical enterprises. With the global menthol market size estimated to be worth USD 765 million in 2022, India (accompanied by China and Brazil) is the world's primary manufacturer, consumer, and exporter of Mentha oil. Despite prominent global demand, the crucial bottleneck in mint cultivation is the need for more superior commercial cultivars. Predominant vegetative propagation mode with difficulties in manual emasculation, differential blooming times, sterile/sub-sterile hybrids, and low seed viability are the primary containment in creating genetic variability by classical breeding approaches. Therefore, genetic complications encountered in conventional breeding have led the breeders to apply mutation breeding as an alternative crop improvement approach in Mentha spp. These attempts at mutation breeding have produced some distinctive mutants as genetic pools for plant breeding programs, and some novel mutant mint cultivars have been made available for commercial cultivation. CONCLUSIONS: The prime strategy in mutation-based breeding has proven an adept means of encouraging the expression of recessive genes and producing new genetic variations. The present review comprises a significant contribution of mutation breeding approaches in the development of mutant mint species and its effects on physiological variation, photosynthetic pigment, essential oil content and composition, phytochemical-mediated defense response, pathogen resistivity, and differential expression of genes related to terpenoid biogenesis. Development and diversification have led to the release of varieties, namely Todd's Mitcham, Murray Mitcham, Pranjal, Tushar, and Kukrail in M. piperita L., Mukta, and Pratik in M. cardiaca Baker, Neera in M. spicata L., Kiran in M. citrata Ehrh., and Rose mint in M. arvensis L. that have revolutionized and uplifted mint cultivation leading to economic gain by the farmers and entrepreneurs.


Assuntos
Mentha , Óleos Voláteis , Mentha/genética , Mentha/metabolismo , Mentol/metabolismo , Extratos Vegetais , Óleos Voláteis/metabolismo , Genótipo
12.
BMC Plant Biol ; 23(1): 555, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37946108

RESUMO

BACKGROUND: The different wavelengths of solar radiation incident on earth [herein: Photosynthetically Active Radiation (PAR) , Ultra Violet-A (UV-A) and Ultra Violet-B (UV-B)] and their spectral balance not only have an impact on plants' growth, morphology and physiology, but also are important for the quality and quantity of plant secondary metabolites. MATERIAL AND METHODS: In an outdoor study we addressed the effects of PAR intensity and UV-A and UV-B on the growth, yield, phenolic and flavonoid content, antioxidant activity and essential oil composition of Pelargonium graveolens L'Hér. The experiment was performed with split plots in a randomized complete block design with three replications. During the growth, two PAR intensities (ambient PAR and reduced PAR) and four UV treatments (ambient UV, enhanced UV-A, enhanced UV-B and enhanced UVA + B) were applied. RESULTS: High PAR intensity decreased the length and width of leaf, the height of plant and fresh weight of aerial parts, and increased the dry weight of aerial parts. Enhanced UV-B irradiation was associated with reduced plant height, leaf expansion and fresh and dry weight of aerial parts. Interestingly, the negative effect of UV-B radiation on morphology and growth of plant was largely alleviated by high PAR intensity. The amount of total phenols and flavonoids, antioxidant activity and essential oil production of P. graveolens strongly increased with the increase of UV-B irradiation and PAR. On the other hand, UV-A radiation did not significantly influence total phenol and flavonoid content, antioxidant activity and essential oil composition. Moreover, the combination of high PAR intensity and UV-B led to further increases in total flavonoid content and antioxidant capacity. Both high PAR intensity and enhanced UV-B increased the percentage of geraniol in essential oil, leading to a slight reduction of citronellol/geraniol ratio which is a marker of quality for rose geranium essential oil. CONCLUSIONS: Overall, we conclude that UV-B irradiation was associated to reduction of plant growth and yield, while, the adverse effect of UV-B irradiation on the plant was mitigated by high PAR intensity. On the other hand, both high PAR and enhanced UV-B boosted the production of phenols, flavonoids and essential oil. Considering that the lower citronellol/geraniol ratio is the most important indicator for the economic value of rose geranium essential oil, reducing citronellol/geraniol ratio under enhanced UV-B radiation and/or high PAR is likely to be favorable.


Assuntos
Óleos Voláteis , Pelargonium , Antioxidantes/metabolismo , Óleos Voláteis/metabolismo , Pelargonium/metabolismo , Raios Ultravioleta , Plantas/metabolismo , Flavonoides/metabolismo , Fenóis/metabolismo , Folhas de Planta/metabolismo
13.
Sci Rep ; 13(1): 18846, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914748

RESUMO

Recently, interest has increased in using bio-additives, herbs, and their extracts as feed additives because of their potential role in improving chick's health and productivity, especially during stress. Thus, our aim in this study is to examine whether nutritional supplementation (probiotics and clove essential oils) will help mitigate the negative effect of heat stress on the bird by modifying the microbial content, boosting immunity, oxidative status, metabolic, and growth. In this study, three hundred one-day-old broiler chicks (Ross 308) were fed the following experimental diet: (CON) basal diet (control diet); (CEO) CON with clove essential oils (300 mg/kg); (PRO) CON with probiotics (2 g/kg); (PC) CON with probiotics and clove essential oils. Our results showed a significant improvement (P < 0.05) in body weight gain, feed conversion ratio, nutrient digestibility, and digestive enzymes activities in broilers fed on PC, CEO, and PRO compared to the control group. Moreover, a significant decrease was recorded in the abdominal fat content and an increase in the relative weight of bursa of Fabricius, and higher antibody levels against Newcastle disease virus, as well as, there was an increase (P < 0.05) in interleukin 10 (IL-10) in all treated groups. Meanwhile, there was a decrease in tumor necrosis factor-α (TNF-α) in all supplemented groups compared with the control group. Serum triglycerides, cholesterol, low-density lipoprotein concentrations, and alanine aminotransferase activities were significantly lower in the treated groups. Superoxide dismutase and glutathione peroxidase levels were elevated (P < 0.05) and the malondialdehyde level value significantly decreased in all supplemented groups. The treated groups enhanced the ileum structure by increasing Lactobacillus, decreasing E. coli, and improving the morphometrically (P < 0.05). This study strongly suggests that clove essential oil and probiotic mixture can be used as a feed supplement to reduce the effects of heat stress by improving the growth performance and enhancing immuno-antioxidant status, ileum morphometric, as well as modifying the microbial community structure of the ileum of broilers.


Assuntos
Microbiota , Óleos Voláteis , Probióticos , Syzygium , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/metabolismo , Escherichia coli/metabolismo , Suplementos Nutricionais , Probióticos/farmacologia , Dieta/veterinária , Íleo/metabolismo , Resposta ao Choque Térmico , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
14.
Sci Rep ; 13(1): 20351, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990133

RESUMO

The antimicrobial properties of garlic are widely known, and numerous studies confirmed its ability to inhibit the growth of Mycobacterium tuberculosis. In this work, we explored the molecular mechanism of action of sulphides present in garlic essential oil against mycobacteria. The targeted transcriptomics and untargeted LC-MS metabolomics were applied to study dose- and time-dependent metabolic changes in bacterial cells under the influence of stressing agent. Expression profiles of genes coding stress-responsive sigma factors regulatory network and metabolic observations proved that sulphides from garlic essential oil are an efficient and specific agent affecting glycerophospholipids levels and their distribution within the cell envelope. Additionally, sulphides induced the Dimroth rearrangement of 1-Tuberculosinyladenosine to N6-tuberculosinyladenosine in mycobacterial cells as a possible neutralization mechanism protecting the cell from a basic nucleophilic environment. Sulphides affected cell envelope lipids and formation of N6-tuberculosinyladenosine in M. tuberculosis.


Assuntos
Alho , Mycobacterium tuberculosis , Óleos Voláteis , Óleos Voláteis/metabolismo , Sulfetos/metabolismo
15.
Int J Biol Macromol ; 253(Pt 8): 127508, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865377

RESUMO

Despite the high economic value of the monoterpene-rich essential oils from different genotypes of Cymbopogon, the knowledge about the genes and metabolic route(s) involved in the biosynthesis of aromatic monoterpenes in this genus is limited. In the present study, a comprehensive transcriptome analysis of four genotypes of Cymbopogon, displaying diverse quantitative and qualitative profiles of volatile monoterpenes in their essential oils has been carried out. The comparative analysis of the deduced protein sequences corresponding to the transcriptomes of the four genotypes revealed 4609 genotype-specific orthogroups, which might contribute in defining genotype-specific phenotypes. The transcriptome data mining led to the identification of unigenes involved in the isoprenogenesis. The homology searches, combined with the phylogenetic and expression analyses provided information about candidate genes concerning the biosynthesis of monoterpene aldehyde, monoterpene alcohol, and monoterpene esters. In addition, the present study suggests a potential role of geranial reductase like enzyme in the biosynthesis of monoterpene aldehyde in Cymbopogon spp. The detailed analysis of the candidate pathway genes suggested that multiple enzymatic routes might be involved in the biosynthesis of aromatic monoterpenes in the genus Cymbopogon. The present study provides deeper insights into the biosynthesis of monoterpenes, which will be useful for the genetic improvement of these aromatic grasses.


Assuntos
Cymbopogon , Óleos Voláteis , Monoterpenos/metabolismo , Transcriptoma , Cymbopogon/genética , Cymbopogon/metabolismo , Filogenia , Aldeídos Monoterpenos e Cetonas , Óleos Voláteis/metabolismo , Genótipo
16.
Tree Physiol ; 43(12): 2150-2161, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37682081

RESUMO

Litsea cubeba, the core species of the Lauraceae family, is valuable for the production of essential oils due to its high concentration of monoterpenes (90%). The key monoterpene synthase and metabolic regulatory network of monoterpene biosynthesis have provided new insights for improving essential oil content. However, there are few studies on the regulation mechanism of monoterpenes in L. cubeba. In this study, we investigated LcTPS32, a member of the TPS-b subfamily, and identified its function as an enzyme for the synthesis of monoterpenes, including geraniol, α-pinene, ß-pinene, ß-myrcene, linalool and eucalyptol. The quantitative real-time PCR analysis showed that LcTPS32 was highly expressed in the fruits of L. cubeba and contributed to the characteristic flavor of its essential oil. Overexpression of LcTPS32 resulted in a significant increase in the production of monoterpenes in L. cubeba by activating both the MVA and MEP pathways. Additionally, the study revealed that LcMYB106 played a negative regulatory role in monoterpenes biosynthesis by directly binding to the promoter of LcTPS32. Our study indicates that LcMYB106 could serve as a crucial target for metabolic engineering endeavors, aiming at enhancing the monoterpene biosynthesis in L. cubeba.


Assuntos
Litsea , Óleos Voláteis , Litsea/genética , Litsea/química , Litsea/metabolismo , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Eucaliptol
17.
BMC Plant Biol ; 23(1): 380, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550621

RESUMO

BACKGROUND: Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many medical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol biosynthesis, was investigated in two oregano subspecies (vulgare and gracile). RESULTS: Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress conditions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot-1) and lowest (0.06 mL pot-1) amount of essential oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correlation was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both subspecies. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol content in subsp. gracile. CONCLUSIONS: The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 genes.


Assuntos
Óleos Voláteis , Origanum , Óleos Voláteis/metabolismo , Timol , Origanum/genética , Origanum/metabolismo , Cloreto de Sódio , Monoterpenos/metabolismo , Estresse Salino/genética
18.
Plant Biotechnol J ; 21(10): 2084-2099, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399213

RESUMO

Polyploidization and transposon elements contribute to shape plant genome diversity and secondary metabolic variation in some edible crops. However, the specific contribution of these variations to the chemo-diversity of Lamiaceae, particularly in economic shrubs, is still poorly documented. The rich essential oils (EOs) of Lavandula plants are distinguished by monoterpenoids among the main EO-producing species, L. angustifolia (LA), L. × intermedia (LX) and L. latifolia (LL). Herein, the first allele-aware chromosome-level genome was assembled using a lavandin cultivar 'Super' and its hybrid origin was verified by two complete subgenomes (LX-LA and LX-LL). Genome-wide phylogenetics confirmed that LL, like LA, underwent two lineage-specific WGDs after the γ triplication event, and their speciation occurred after the last WGD. Chloroplast phylogenetic analysis indicated LA was the maternal source of 'Super', which produced premium EO (higher linalyl/lavandulyl acetate and lower 1,8-cineole and camphor) close to LA. Gene expression, especially the monoterpenoid biosynthetic genes, showed bias to LX-LA alleles. Asymmetric transposon insertions in two decoupling 'Super' subgenomes were responsible for speciation and monoterpenoid divergence of the progenitors. Both hybrid and parental evolutionary analysis revealed that LTR (long terminal repeat) retrotransposon associated with AAT gene loss cause no linalyl/lavandulyl acetate production in LL, and multi-BDH copies retained by tandem duplication and DNA transposon resulted in higher camphor accumulation of LL. Advances in allelic variations of monoterpenoids have the potential to revolutionize future lavandin breeding and EO production.


Assuntos
Lavandula , Óleos Voláteis , Cânfora/metabolismo , Lavandula/genética , Lavandula/metabolismo , Filogenia , Melhoramento Vegetal , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo
19.
Planta ; 258(3): 54, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515637

RESUMO

MAIN CONCLUSION: Santalum album (E,E)-α-farnesene synthase catalyzes FPP into (E,E)-α-farnesene. Overexpression of the SaAFS gene positively improved cold stress tolerance through JA biosynthesis and signaling pathways in Arabidopsis. Volatile terpenoids are released from plants that suffer negative effects following exposure to various biotic and abiotic stresses. Recent studies revealed that (E,E)-α-farnesene synthase (AFS) plays a significant role in a plant's defence against biotic attack. However, little is known about whether AFS contributes to plant resistance to cold stress. In this study, a SaAFS gene was isolated from Indian sandalwood (Santalum album L.) and functionally characterized. The SaAFS protein mainly converts farnesyl diphosphate to (E,E)-α-farnesene. SaAFS was clustered into the AFS clade from angiosperms, suggesting a highly conserved enzyme. SaAFS displayed a significant response to cold stress and methyl jasmonate. SaAFS overexpression (OE) in Arabidopsis enhanced cold tolerance by increasing proline content, reducing malondialdehyde content, electrolyte leakage, and accumulating reactive oxygen species. Transcriptomic analysis revealed that upregulated genes related to stress response and JA biosynthesis and signaling were detected in SaAFS-OE lines compared with wild type plants that were exposed to cold stress. Endogenous JA and jasmonoyl-isoleucine content increased significantly in SaAFS-OE lines exposed to cold stress. Collectively considered, these results suggest that the SaAFS gene is a positive regulator during cold stress tolerance via JA biosynthesis and signaling pathways.


Assuntos
Arabidopsis , Óleos Voláteis , Santalum , Arabidopsis/metabolismo , Santalum/genética , Santalum/metabolismo , Ciclopentanos/metabolismo , Óleos Voláteis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2316-2324, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282860

RESUMO

Patchoulol is an important sesquiterpenoid in the volatile oil of Pogostemon cablin, and is also considered to be the main contributing component to the pharmacological efficacy and fragrance of P. cablin oil, which has antibacterial, antitumor, antioxidant, and other biological activities. Currently, patchoulol and its essential oil blends are in high demand worldwide, but the traditional plant extraction method has many problems such as wasting land and polluting the environment. Therefore, there is an urgent need for a new method to produce patchoulol efficiently and at low cost. To broaden the production method of patchouli and achieve the heterologous production of patchoulol in Saccharomyces cerevisiae, the patchoulol synthase(PS) gene from P. cablin was codon optimized and placed under the inducible strong promoter GAL1 to transfer into the yeast platform strain YTT-T5, thereby obtaining strain PS00 with the production of(4.0±0.3) mg·L~(-1) patchoulol. To improve the conversion rate, this study used protein fusion method to fuse SmFPS gene from Salvia miltiorrhiza with PS gene, leading to increase the yield of patchoulol to(100.9±7.4) mg·L~(-1) by 25-folds. By further optimizing the copy number of the fusion gene, the yield of patchoulol was increased by 90% to(191.1±32.7) mg·L~(-1). By optimizing the fermentation process, the strain was able to achieve a patchouli yield of 2.1 g·L~(-1) in a high-density fermentation system, which was the highest yield so far. This study provides an important basis for the green production of patchoulol.


Assuntos
Óleos Voláteis , Pogostemon , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Óleos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...